Lower Bounds for the Fair Resource Allocation Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bicriteria Resource Allocation Problem in Pert Networks

We develop a bicriteria model for the resource allocation problem in PERT networks, in which the total direct costs of the project as the first objective, and the mean of project completion time as the second objective are minimized. The activity durations are assumed to be independent random variables with either exponential or Erlang distributions, in which the mean of each activity duration ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On The Impossibility Of Robust Solutions For Fair Resource Allocation

We show that the presence of even a single faulty process makes it impossible to design a strategy for fair allocation of a shared resource. A classic problem in distributed systems is the following resource allocation problem: given a set of processes sharing a resource, design a synchronisation mechanism that guarantees (i) mutual exclusion, i.e., at any moment, at most one process uses the r...

متن کامل

Lower Bounds for the Graph Homomorphism Problem

The graph homomorphism problem (HOM) asks whether the vertices of a given n-vertex graph G can be mapped to the vertices of a given h-vertex graph H such that each edge of G is mapped to an edge of H. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 2-CSP problem. In this paper, we prove several lower bounds for HOM under the Exponen...

متن کامل

Lower Bounds for the Quadratic Assignment Problem

We investigate the classical Gilmore-Lawler lower bound for the quadratic assignment problem. We provide evidence of the difficulty of improving the Gilmore-Lawler Bound and develop new bounds by means of optimal reduction schemes. Computational results are reported indicating that the new lower bounds have advantages over previous bounds and can be used in a branch-and-bound type algorithm for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM SIGMETRICS Performance Evaluation Review

سال: 2018

ISSN: 0163-5999

DOI: 10.1145/3199524.3199552